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The scaling properties of spectra of real world complex networks are studied by using the wavelet transform.
It is found that the spectra of networks are multifractal. According to the values of the long-range correlation
exponent, the Hust exponent H, the networks can be classified into three types, namely, H�0.5, H=0.5, and
H�0.5. All real world networks considered belong to the class of H�0.5, which may be explained by the
hierarchical properties.
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Complex networks have attracted increasing attention in
recent years due to their relevance to diverse problems in
physical, biological, and social sciences �1–3�. The primary
purpose is to understand the relations between the underlying
structures, dynamics, and functions. Generally, the dynami-
cal processes as the transport of mass, energy, signal, and/or
information occur at differen structure scales. The organiza-
tion patterns at different scales may provide a reasonable
solution to the problems.

Song et al.�4� found that the World Wide Web �WWW�,
social, protein-protein interaction �PPI�, and cellular net-
works are fractal under a length-scale transform, namely, one
can define a topological box in which the shortest path be-
tween each pair is less than lB, the size of the box. The fractal
behavior implies a power-law relation between the minimum
number of boxes, NB, needed to cover the entire network and
the box size, NB�lB�� lB

−dB. dB is the fractal dimension.
Detailed works have been done on the coverage methods

�5�. It is shown that finding the minimum number of boxes to
cover networks can be mapped to the graph coloring problem
in the NP-complete complexity class, and the well-
established algorithms in the coloring problem provide a so-
lution close to optimal. A random burning-based algorithm is
also proposed due to a number of other benefits �6�.

A network with N identical nodes is described by an ad-
jacent matrix A whose elements Aij =1 or 0 if the nodes i and
j are connected and disconnected, respectively. By mapping
the nodes and the edges to atoms and bonds, the network can
be regarded as a large cluster �7�. The Huckel Hamiltonian of
the large cluster reads �I+�A, where � and � are the site
energy and the hopping integral, respectively. Generally, we
can set �=0 and �=1, that is, the Hamiltonian is A. The
spectrum of the network is defined as the rank ordered ei-
genvalues of A, namely, E= �E1�E2� ¯ �EN�.

The topological structure of the network determines the
spectrum. The invariance properties embedded in the spec-
trum in turn reflect the topological symmetries of the net-
work. It is well known that the fractal structures of aperiodic
crystals lead to the fractal behaviors of the corresponding

spectra �for a detailed review, see Ref. �8� and the references
therein�. An interesting question is then, how the fractal
structures of networks affect the corresponding spectra. In
this paper, we shall detect the scaling properties embedded in
spectra of networks.

The wavelet transform �WT� �9� is used to detect the scal-
ing properties. We consider the nearest-neighbor level spac-
ing series L= �Li=Ei+1−Ei , i=1,2 , . . . ,N−1�. The WT of the
series L can be calculated as T�s ,a�= 1

a�i=1
N−1Lig� i−s

a �. g is the
wavelet and a the given scale. The wavelet transform can
remove effectively polynomial trends along the series.

The series under consideration can be decomposed into
many subsets characterized by different local Hurst expo-
nents, which quantify the local singular behavior and thus
relate to the local scaling of the series. Traditionally, the local
Hurst exponents are evaluated through the modulus of the
maximal values of T�s ,a� at each point in the series. We
denote the positions of the WT maximum with �s1 ,s2 , . . .sM�.
In the long scale limit, the partition function is expressed as

Z�a,q� = �
s=s1

sM

	T�s,a�	q � a��q�. �1�

For positive and negative q, ��q� reflects the scalings of the
large and small fluctuations, respectively.

If ��q� is a straight line, the analyzed series contains only
linear correlations �monofractal� and its slope represents the
Hurst exponent. If ��q� is a nonlinear function, the series is
called multifractal, since different subsets of the series ex-
hibit different local Hurst exponents. In order to characterize
this multifractal, one considers the fractal dimensions of the
subsets of the series that is characterized by ��q�, which is
related to ��q� by a Legendre transform, D�h�=qh
−��q� ,h= d��q�

dq . The width of this function for q→ 	
 is a
measure for the strength of multifractal, ��=�max−�min.

However, the numerical derivative of ��q� in this method
may induce unacceptable errors to ��. Thus, we employ a
functional form fitted to ��q� suggested by Kantelhardt et al.
�10�,

��q� = − ln�xq + yq�/ln 2. �2�
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�� = 	ln x − ln y	/ln 2. �3�

Sometimes the bifractal is required to obtain ��. For a bi-
fractal series ��q� is characterized by two distinct slopes �1
and �2,

��q� = 
q�1 − 1, q � qx,

q�2 + qx��1 − �2� − 1, q � qx,
�4�

or

��q� = 
q�1 + qx��2 − �1� − 1, q � qx,

q�2 − 1, q � qx.
�5�

We can obtain the multifractal strength, ��= 	�1−�2	. These
forms can be derived from a modification of the multiplica-
tive cascade model �11�.

In the multifractal case, one conventionally refers to the
second moment as the Hurst exponent, i.e.,

H = ���2� + 1�/2. �6�

For H�0.5, the levels will tend to form local clusters with
small level spacings in different scales, while for H�0.5
these clusters cannot be formed. The critical value of H
=0.5 corresponds to a series showing that the corresponding
integrated series behaves similar to a random walk. These
characteristics are induced obviously by the structures of net-
works generated by different mechanisms. Therefore, the ex-
ponent H can be used as a criterion to classify networks into
three categories with H�0.5, H=0.5, and H�0.5, respec-
tively.

Theoretically, we should have ��0�=−1 while the calcu-
lated values may deviate slightly from it. The deviation
��0=1− 	��0�	 can be used as the estimation of the error of
��2�. The corresponding error of H is

�H = ���0�/2. �7�

In each application reported below we have used the real
analytic wavelet g�n� among the class of derivatives of the
Gaussian function. The polynomial trends up to n order can
be removed. We present the results by using the parameter
value n=4. Calculations with higher orders �n=5 and 6� lead
to almost the same results.

Randomizing L, we detect also the scaling behaviors em-
bedded in the resulting series �called shuffled series� as a
comparison. The partition function Z�a ,q� are calculated by
using the software provided in PHYSIOTOOKIT �12�. The in-
tegrated series, i.e., the spectrum E is used as the input data.
The relation in Eq. �6� is also checked by using the detrended
fluctuation analysis software.

We examine the scaling behaviors for the spectra of some
real world networks �4�. The cellular networks consider the
cellular functions as intermediate metabolism and bioener-
getics, information pathways, electron transport, and trans-
membrane transport. The direct edges are replaced simply
with nondirected edges. Generally, we find the spectra of real
world networks to be multifractal. We present in Fig. 1 the
result for the E. Coli cellular network. The Hurst exponent
distributes in a wide range, ��=1.0. The long-range corre-
lation exponent is 0.5. For the actor network, we consider

only the subnetwork containing the nodes numbered
1–8 000. The spectrum for this network behaves bifractally,
and the long-range correlation exponent is 0.75, as given in
Figs. 1�d� and 1�e�.

For the S. cerevisiae protein-protein interaction network,
we consider two versions of the database. One is investigated
by �4�, which contains 1381 nodes and 2493 edges. The other
one is from �13,14�, which has 1037 nodes and 1058 edges.
The edges in this version are high confident. They are called
low-confident and high-confident networks, respectively. As
shown in Fig. 1�c�, the addition of the so-called low-
confident edges in the low-confident network makes ��q�
versus q significantly closer to a linear relation. The slope of
the black dashed line is H=0.66.

This change of the relations of �q versus q for the high-
confident and low-confident networks may be caused simply

FIG. 1. �Color online� Self-affine properties embedded in spec-
tra of real world networks. �a�, �b� Histograms of the levels of the E.
Coli cellular network and the actor subnetwork �containing the
nodes numbered 1–8 000�. �c� �d� Partition functions. �e� �f� Scal-
ing exponent �q as a function of q. The E. Coli cellular network
behaves multifractal. The actor subnetwork behaves bifractal, and
Eq. �5� is used to obtain ��. �g� �h� The relations of �q versus q for
the high confident, low confident, and artificial versions of the S.
cerevisiae protein-protein interaction network. High confidence
may not necessarily imply high quality. The result for the artificial
network is an average over 20 realizations. A dashed line is added
as reference, the slope of which is 0.66. The partition functions are
shifted to avoid overlapping.
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by a size effect. To exclude the size effect, we consider also
some artificial networks, in which the same number of ran-
dom edges and nodes are added to the high-confident net-
work. Starting from the high-confident network, at each step
a new node is added by connecting it with a randomly se-
lected node in the existing network. When the size of the
network reaches 1381, we add edges between randomly se-
lected pairs of nodes until the total number of edges is 2493.
The resulting network has the same numbers of edges and
nodes with the low-confident network.

The randomly added edges and nodes in the artificial net-
works do not lead to a similar result. This comparison may
prefer to support the conjecture that an exactly constructed
protein interaction network behaves perfectly fractally. The
deviation of the actual structure from the perfect fractal is
due to the incompleteness of the databases which are con-
tinuously being updated with newly discovered physical in-
teractions. The high-confidence may not necessarily imply
high quality.

The scaling characteristics for the real world networks are
listed in Table I. We present only the results of networks
whose partition functions meet the scaling relation in Eq. �1�
in a wide range of q, namely �q�5. Interestingly, we find
that the values of H for the real world networks are in the
range of H�0.41. Taking note of the values of error estima-
tions �H, as presented in Table I, we have H�0.41�0.5.

The hierarchical property may be helpful in understanding
the fact that H�0.5 for the real world networks. In the
present paper, we use the definition of hierarchy proposed in
�15�. That is, for a hierarchical network, besides the small-
world and scale-free characteristics, there exists a simple re-
lation between the clustering coefficient C and the degree k,

C�k��k−1. Our detailed calculations show that all the con-
sidered real world networks are hierarchical in this sense.

For the Watts-Strogatz small-world �WSSW� networks
�2�, we can construct a regular circle lattice, with each node
connected with its d right-handed nearest neighbors. Each
edge is rewired with probability pr to another randomly se-
lected node.

As for the Barabasi-Albert scale-free �BASF� networks
�3�, we start from several connected nodes as a seed, at each
step we add a new node and w edges from the new node to
different preferentially selected nodes in the existing net-
work. The probability for a node being selected is propor-
tional to its degree.

The results for the constructed networks are listed in
Table I. The sizes of the networks are 2 000. And the param-
eter d is assigned 2. The values of H for the WSSW networks
are in the range of 0.15–0.31. For the BASF networks, with
the increase of w the small-world effect becomes more and
more significant and the value of H decreases rapidly from
0.5 �w=2� to �0.2 �w�3�. Hence, for the real-world net-
works, the hierarchy is essential for the values of H being
larger than 0.5.

The values of H for the shuffled series are almost exactly
0.5. And the corrections due to the fluctuations ���0� are
neglectable. The WSSW and BASF networks with sizes
4 000, 6 000, and 8 000 have similar characteristics �not
shown in Table I�.

In summary, we have found self-affine fractals embedded
in spectra of complex networks. For the real world networks
considered in the present work, the values of the long-range
correlation exponents are in the range of H�0.5, which may
be attributed to the hierarchical properties in the sense of a

TABLE I. The self-affine fractals embedded in spectra of real world, WSSW, and BASF networks. For the
real world networks the values of H are basically in the range of H�0.45�0.5, while that for WSSW and
BASF networks are significantly smaller, namely, H�0.3. We present only the results for networks whose
partition functions meet the scaling relation in Eq. �2� in a wide range of q, namely �q�5.

Networks x /y /��
or

��1 ,�2 ,qx�

H /�H Networks x /y /��
or

��1 ,�2 ,qx�

H /�H

WWW �3� �0.00,0.79,0.00� 0.97/0.08 WSSW pr=0.00 0.50/0.50/0.00 1.02/0.01

Actor �3� �0.40,0.75, –0.3� 0.75/0.03 pr=0.03 0.81/0.81/0.00 0.31/0.01

PPI �12� D. melanogaster �0.51,0.66,0.40� 0.66/0.01 pr=0.12 0.76/0.95/0.33 0.22/0.01

C. elegans 0.41/0.67/0.73 0.85/0.07 pr=0.15 0.66/1.00/0.61 0.24/0.01

Cellular �3� B. burgdorferi 0.61/0.61/0.00 0.72/0.07 pr=0.21 0.76/1.00/0.40 0.17/0.01

A. aeolicus 0.42/0.80/0.94 0.64/0.01 pr=0.24 0.70/1.00/0.50 0.21/0.01

C. elegans 0.37/0.93/1.35 0.50/0.03 pr=0.27 0.72/1.00/0.47 0.20/0.01

E. coli 0.45/0.89/1.00 0.50/0.04 pr=0.30 0.73/1.00/0.46 0.19/0.02

H. pylori 0.45/0.83/0.89 0.59/0.08 BASF w=2 0.71/0.71/0.00 0.50/0.02

M. leprae 0.51/0.88/0.77 0.47/0.04 w=3 �1.05,0.25,−1.13� 0.25/0.01

P. aeruginosa 0.43/0.93/1.12 0.46/0.02 w=4 0.77/1.00/0.39 0.17/0.00

S. typhi 0.42/0.96/1.18 0.43/0.04 w=5 0.76/1.00/0.40 0.17/0.02

T. pallidum 0.38/0.82/1.11 0.65/0.07 w=6 0.74/1.00/0.43 0.18/0.01

Y. pestis 0.54/0.87/0.69 0.47/0.03 w=7 0.74/1.00/0.44 0.19/0.01

C. pneumoniae 0.63/0.86/0.44 0.41/0.07 w=8 0.79/1.00/0.35 0.15/0.01
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dependence of clustering on the degree. This evidence may
support the idea that fractals in topological structures induce
the fractals in spectra of networks.

For the constructed BASF networks, which do not have
box-based fractal structures, we have also found rich multi-
fractal structures in the spectra. However, the values of H are
all significantly smaller than 0.5 for networks with w�3.
There may exist a kind of scale-invariance in the topological
structures rather than the box-based fractals in the con-
structed networks.

One paradox that may be raised is that the box-based
fractal can be explained with degree-degree anticorrelations
�4�, while we find the positive correlations in the spectra
�H�0.5� for the real world networks. Because of the degree-
degree anticorrelations, the nodes tend to aggregate into
many small-sized structure clusters with the hubs as centers.
And there exist loosely connections between the clusters.
There are strong “repulsive effects” between the levels
within each cluster, but the levels for different clusters may
be very close or even degenerate. That is, there will appear
some locals with high density of levels in the spectrum,
called level clusters. We can expect H�0.5 �positive corre-
lations in spectra� for this kind of network.

While for the BASF networks with w�3, since there are
strong correlations between the hubs, the clusters centered at

the hubs will merge into a small number of large-sized clus-
ters. The strong “repulsive effects” between the levels make
the so-called “clustering of levels” impossible. Consequently,
the spectra are anticorrelated �H�0.5�.

Hence, the difference of our results with the box-based
results is not necessarily a contradiction. Obviously, the re-
lation between the self-affine behaviors of spectra and the
fractal dimension based upon box-counting approaches de-
serves further investigation.

Network comparison is an important topic in systems bi-
ology. It can shed light on the evolution and diseases detect-
ing by comparing cellular networks of different species or
diseased and healthy cellular networks �16�. One basic task is
to design node labeling independent representations of net-
works and circumvent the problem of graph isomorphism.
Spectra analysis of complex networks may provide useful
information for that purpose.
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